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Context and motivation

© Model input-output multi-physics systems for sound and musical
applications:

o Phenomena: mechanical, acoustic, electronic, magnetic, etc

o Realism: nonlinearities, non ideal dissipations, etc

@ Satisfy fundamental physical properties:
o causality, stability, passivity and more precisely ...
o the power balance structured into conservative/dissipative/source parts

o other natural invariants and symmetries (if any)

© Simulate such systems and preserve these properties in the discrete
time domain (+accuracy+sound quality/Shannon-Nyquist principle)

@ Design code generators from netlists for real-time applications

© Design correctors and controllers to reach target behaviours



Outline

@ Context

© Framework: basics, recalls and tools

© Analog electronics and electro-acoustics

@ Mechanics: nonlinear damped vibrations

© Control applications in acoustics

© Voice: a minimal model to analyze self-oscillations

@ Conclusion



Outline

© Framework: basics, recalls and tools
@ Modelling: Component-based approach & Port-Hamiltonian Systems
@ Power-balanced numerical method
@ Tool: the PyPHS Python library [Falaize]



A physical system is made of. ..

@ Energy-storing components: (energy)
N
E= Zn:1 en 20
@ Dissipative components: (dissipated power)

Q:anﬂﬂd’"zo

@ External sources: (external power)
P
Pext = Zp:1 Sp
@ Conservative connections (power balance)
dE __ P, Q
gt — Text —

dt



A physical system is made of. ..

@ Energy-storing components: (energy)
N
E=H(x) =Y, Ha(x:) >0
@ Dissipative components: (dissipated power)
M
Q= Z(W)TW = Zm:l Zm(Wm) Wm > 0
(effort X flow : force X velocity, voltage X current, etc)
@ External sources: (external power)
P
Pext = uTy = Zp:l UpYp
@ Conservative connections (power balance)
VH(x)T % +z(w)'w—uTy=0
Port-Hamiltonian Formulation Power balance
i VH (x
—dr ) 4 0 = A’B
w =S- z(w) T
— —a = A'SA
if S=-ST

B A
A: components constitutive laws & external actions,
S: interconnections between flows and efforts.



Example: damped mechanical oscillator

momentum
elongation

kinetic
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P
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Example: damped mechanical

oscillator
a momentum (MU0 kinetic
x= ( q elongation H(x) = 3x ( 0 K)* potential

P

inertia force
spring velocity

mass velocity
spring force

W= vq dashpot velocity | z(w) = Cvq damping force
Y = Vext external velocity | u = foxy external force
dx 0 —1|—-1]+1 H
a 41 0| o] o VHE)
w Y1 0| 0] 0 z(w)
—y —1 0 0 0 u




Example: damped mechanical oscillator

momentum
elongation

0 X
K

kinetic
potential

P

inertia force
spring velocity

mass velocity
spring force

W= vq dashpot velocity | z(w) = Cvq damping force
Y = Vext external velocity | u = foxy external force
fext — Kq— Cvq dx 0 —1| —1]|+41 H
p/M dt 41 o] o o V(i()x)
p/M w +1 0 0| O _zw)
p/M -y - 0] o[ © u




Some variations

RN
o Fu 0 —1|—-1|+1 v
S Vi [ +1 o] of o Fx
ve =\ o[ o[ o Fc
K C —Vext -1 0 0 O Foxt
Hamiltonian systems (conservative, autonomous)
FM 0 -1 VM
VK _ +1 0 FK
"Mass+Damper+Excitation" (spring removed)
Fu 0 =il || 4 Vi
ve B ] 0] O© Fc
— Vext =1l 0 0 [
"Mass-+Excitation"
Fuy 0 +1 VM
— Vext -1 0 Fext




Formulations

1. Differential-Algebraic

dx

g VH(x)
=S |"zw) |, Ss=-5"
T u
2. Differential (1 — 2) by solving algebraic part w = W(VH(x), u)
% = (J=-R) VH(x) +Gu, J=—J", R=R">0
-y = ~G" VH(x) +Du, D=-D"
xl2 KX22

+

[y
o|lolo =
o|lo|lo
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© Framework: basics, recalls and tools

@ Power-balanced numerical method



Power-balanced numerical method (see also [Lopes et al., IFAC-LHMNLC'2015))

Classical numerical schemes for & = f(x):

@ efficiently approximate % and exploit f

@ a posteriori analysis of stability



Power-balanced numerical method (see also [Lopes et al., IFAC-LHMNLC'2015))

Classical numerical schemes for 4 = f(x):

@ efficiently approximate % and exploit f
@ a posteriori analysis of stability
A discrete power-balanced method (PHS)

Exploit differentiation chain rule

dE _ AH dx, Ha(xalk + 1]) — Ha(xalK]) xnlk + 1] — xa[k] _ E[k + 1] — E[K]
dt Ox, dt _Z xnlk + 1] — xa[K] 5t N 5t
’ VH (x[K], 6xIK]) (0x[K1/3t)a

Jointly substitute x — dx/5t and VH (x) — VH (x, §x):

% VIH (x,6x)
w =S z(w)

B A
Simulation : solve (0x, w) at each time step k (e.g. Newton-Raphson algo.)



Power-balanced numerical method (see also [Lopes et al., IFAC-LHMNLC'2015))

Classical numerical schemes for 4 = f(x):

@ efficiently approximate % and exploit f
@ a posteriori analysis of stability
A discrete power-balanced method (PHS)

Exploit differentiation chain rule

dE _ AH dx, Ha(xalk + 1]) — Ha(xalK]) xnlk + 1] — xa[k] _ E[k + 1] — E[K]
dt Ox, dt _Z xnlk + 1] — xa[K] 5t N 5t
’ VH (x[K], 6xIK]) (0x[K1/3t)a

Jointly substitute x — dx/5t and VH (x) — VH (x, §x):

% VIH (x,6x)
w =S z(w)

B A
Simulation : solve (0x, w) at each time step k (e.g. Newton-Raphson algo.)

Skew-symmetry of S preserved = 0= ATSA=ATB =6E/st +z(w)"w—u'y
For linear systems, V¢ H (x,dx) = V(x 4 6x/2) restores the mid-point scheme.
Method also applies to nonlinear components and non separate Hamiltonian

Also available: Power-balanced Runge-Kutta scheme (non iterative algo.) [Lopes
et al., LHMNLC'2015]



Simulation 1: mass-spring-damper

@ Parameters: M=100g, K=5N/m, C=0.1N.s/m et dt=5ms

-
@ Initial conditions: xg = [mVO:O, lo=10 cm]

@ Excitation: Fext(t) = Fmax ljss,106)(t) With Frax=K£l/2=0.25N
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Simulation 2: idem with a hardening spring

@ Potential energy: Hé\IL(XQ):K L2 [cosh(xz/L) — 1] ( ~ kx22/2>
® Physical law:  F, = (HI) (o) = K Lsinh(xo/L) (~ Kx)

@ Reference elongation: L=/¢;/4=25mm
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© Framework: basics, recalls and tools

@ Tool: the PyPHS Python library [Falaize]



Automatic generation of code: the PyPHS Python library [Antoine Falaize]

https://pyphs.github.io/pyphs/
2012-16 : First version

[Falaize, PhD]

2016 —— : Opensource library with periodic releases [Falaize & contributors]

Connections '

Prysical Components ‘60
°
°
/ % ‘O\\
7\
\¢ 1 5
o /

The main objects of the library are introduced in this presentation. The standard workflow is as follows.
1. Inputs are netlist descriptions of network systems (very similar to SPICE netlsts).
2. The associated graphs are analyzed to produce the core system's dynamics equations i the PHS formalism.
3 Simulations (.. numerical solving of based on a variety

=> {bictionary

> hetise

graph

Workflow

Symbolic Symbolic
PHS

-+ simulation code is and called from python (can also be used in bigger applications).
5 LaTeX descriptionfles can be generate (for documentation, publication, e

Numerical
PHS

be extended ).

| iEvaluate they, 77 H
i numerical (€% PSP}

— a short presentation (pdf file)
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© Analog electronics and electro-acoustics
@ Guitar Pedal and Electric Piano
@ Ondes Martenot
@ Operational Amplifier

[Falaize, PhD’16]
[Najnudel et al., AES'18]
[Muller et al., DAFx'19]



PhD, 2016: Antoine Falaize
Passive modelling, simulation, code generation
and correction of audio multi-physical systems

Two examples

Wah pedal (CryBaby): netlist — PyPHS — LateX eq. & C code

B % | Components | Number | e Ellualln:
w4 L =} | Storage 7 linear .
oy “Dissipative | 18 (5 NL, 2 modulated) | ound 12 dv
Ports 3 (IN, OUT, battery) Sound 1b: wah
A simplified Fender-Rhodes Piano Sound 2
- 10-2

e e 5 < A »
Components | Hammer | 1 beam Pickup/RC-circuit —os| TS

Storage 2 NL 2M lin. 2 lin. (4 NL connection) 16
Dissipative 1 NL M lin. 1 lin. — Total
Ports 2 1 1 4% Lszlimlélv(s)l 5T
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© Analog electronics and electro-acoustics

@ Ondes Martenot [Najnudel et al., AES'18]



Real-time simulation of Ondes Martenot [Najnudel et al., AES2018]

Ondes Martenot (created by Maurice Martenot in 1928)

Controls Circuit Diffuseurs

— Video 3 [Thomas Bloch, improvisation, 2010]



Real-time simulation of Ondes Martenot [Najnudel et al., AES2018]

Ondes Martenot (created by Maurice Martenot in 1928)

Controls Circuit Diffuseurs

— Video 3 [Thomas Bloch, improvisation, 2010]

Context/Problem (Musée de la Musique, Philharmonie de Paris)

Technological obsolescence of a musical instrument:
70/281 remaining instruments (handmade), 1200 pieces (Varése, Maessian, etc)

Objective (Collegium Musicae-Sorbonne Université)

Real-time simulation of the circuit based on physics — PHS approach



Ondes Martenot: 5 stages circuit

var. osc. fixed osc. demodulator preamp. power amp.

Specificities: heterodyne oscillators (1930's)
o 2 High frequencies (~ 80kHz+4f) — demodulator — audio range (47,267, ...)

V1 (f1 = 80 kHz + &f Hz)
ribbon/keyboard m w

V2 (f2 = 80 kHz) 1 NL == harmonics

W M V4 (fm = 5f Hz)

e Vacuum tubes: w = [grid and plate currents]’, z(w) = associated voltages
(passive parametric model [Cohen’12])

e Pb: ribbon-controlled oscillator involving time-varying capacitors in parallel



Ondes Martenot: capacitors in parallel “m“ ,

Problem:
ve =va=vg &

Capacitors (n=A,B)
State (charge): qn ia va = Hp(qa)

! not Y
Energy : Hn(an) B = {realizable} VB = HB(qB)
Flux (current): i, =dq,/dt —Vvc ic
Effort (voltage): v, = H;(qs)

— Build the equivalent component C = A//B



Ondes Martenot: capacitors in parallel “L—.t” N I )

Problem:
ve=va=vg &

Capacitors (n=A,B)
State (charge): qn ia not va = Hp(qa)

. /
Energy : Hn(an) B = {realizable} VB = HB(qB)
Flux (current): i, =dq,/dt —Vvc ic
Effort (voltage): v, = H;(qs)

— Build the equivalent component C = A//B

Hyp: g, — v, = H/(q,) bijective (increasing law)

Find the total energy Hc(qc) for the total charge gc = qa + gs
© Charge as a function of the voltage v, = v¢: o = [HA] (V) i= Qn(vc)
@ Total charge (idem): gc = [Qa + QB](vc) =: Qc(ve)
© Total energy function: Hc(qc) = Zn:A,B Hn o Qyo Qz'(qc)

Also available if H, depends on additional states (ribbon position £)

Power-balanced simulation with H(qg,?) = q2/(2C1\,1m.tenot(€))

— video 4 (sound=circuit output voltage, without the diffuseurs)
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© Analog electronics and electro-acoustics

@ Operational Amplifier [Muller et al., DAFx'19]



Operational Amplifier

Idealized component
e 5 ports

€s+

iy

€out

e Algebraic conservative law

iy . et
i g e_
isi | = —p(+e) | | es+
is— —p(—¢) es—
€out ple) p(=€) fout
20pa(w) J(wopa)=—J(wora)" WopA

e Modulation factor

[Muller et al., DAFx'19]



Operational Amplifier

Idealized component
e 5 ports

iy

€out

I’+ e
i . e_
sy | = —p(+e) | | es+
is— . —p(—¢) es—
€out ple) p(=€) . fout
20pa(w) J(wopa)=—J(wora)" WopA

e Modulation factor

Typical analog filters

[Mul

e Circuit:

e Nonlinear PHS:

v

ler et al., DAFx'19]

(Sallen-Key)

YsK ¢V+
2 L IG\S‘ st 4
iRy iRy iy I/:?L
G Co -
T } v
X VH(x)
w | z(w)
woea | — zopa(Wopa)
—y i

Sounds 5 (simulations: linear / nonlinear)

I\[\AI\A

ooo

vvve

0.005

0010 0.015

time (s)

0.020 0.025 0.030
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@ Mechanics: nonlinear damped vibrations
@ Nonlinear damping in a beam
@ Nonlinear Berger plate
@ Nonlinear string and Finite Element Method

[Hélie,Matignon,2015]
[Hélie,Roze’18]
[Raibeau, Roze’18]



Motivation

1. Theoretical issues

Given a linear conservative mechanical system,
o find damping models that preserve the eigen modes (with eigen structure)
@ design nonlinear damping in such a class

@ provide a power balanced formulation that is preserved in simulations

2. Application in musical acoustics
Build physical models to produce:
@ a variety of beam sounds (glokenspiel, xylophone, marimba, etc)

o morphed sounds through some extrapolations based on physical grounds
(e.g. meta-materials with damping depending on the magnitude)



Damping models for Mg + Cg + Kq = f (finite-dimensional case)

Conservative problem (C=0)

o g+ (M 1K)g= M"1f

o Eigen-modes e;: (M 1K)e; = w?e; (w;: angular freq.)
Damping that preserves eigen-modes ?

e Choose M~1C as a non-negative polynomial of matrix M~1K
— Caughey class (1960): C = coM + K + oKM~1K + . ..



Damping models for Mg + Cg + Kq = f (finite-dimensional case)

Conservative problem (C=0)

o g+ (M 1K)g=M-1f

o Eigen-modes e;: (M 1K)e; = w?e; (w;: angular freq.)
Damping that preserves eigen-modes ?

e Choose M~1C as a non-negative polynomial of matrix M~1K
— Caughey class (1960): C = coM + K + oKM~1K + . ..

Eigen-modes with nonlinearly-damped dynamics ?

e Make ¢, depend on the dynamics

Ex.: damping as a function of energy H(x) (state x = [q, p = Mg]T)

cn(x) = nn(H(x)) € [cn,ci] with ¢; >0

()"

Bl

e Increasing: kn(h)=c,+(ci — c,,’)f(%) Fh) =2

h

@ Decreasing: xi(h)=ci—(c; — C;)f(h—o)




Application: the Euler-Bernoulli beam
1. Pinned beam excited by a distributed force

(H1) Euler-Bernoulli kinematics: straight cross-section after deformation
(H2) linear approximation for the conservative problem
(H3) viscous and structural dampings: only cp, c; > 0

2. Dimensionless model (w: deflection, t >0,0</¢<1)
e PDE: &’w +(co+c107) d:w + 8 w = fuy
~—  —— ~—

M=Id c K
o Boundaries ¢ € {0,1}: fixed extremities (w=0), no momentum (97w =0)

1 2 \2 2
) Energy: E:/ (M+M) de
LU 2 2

3. Modal decomposition: e,,(¢)=+/2sin(mn¥) (1<m<n)

_In 0n><n

PHS: | dux= (J — R)VH(x) + Gu with J =% J,R: {O"X" O
y= GTVH(X) G" = [0nxn, In]

with H(x=[g;p = Mg]) = 3p"M~*p + 39" Kgq
and q:[qla""qn]T’ u= [U17...7Un]T, y = [ylv"'vyn]T
(projections of w, fuxt, Vext)

where M = I,, K = r*diag(1,...,n)* and C = oo/, +cK.



Damping and simulation parameters

Examples of spectrograms for standard linear dampings: co~ 1072
metal (c; ~ 1079) glass (c; ~ 107°) wood (c; ~ 107%)
i — I
£ coool S |8 oo £ oono
02 04 uT?me “ﬁ.g) 1 12 1.4 % 02 0.4 DT?ms “E g) 1 12 1.4 % 0.2 0.4 OT?me “g g) 1 12 1.4

Nonlinear damping (from metal to wood):
C(x) = co(x)! + c1(x)K with [ metal [ ¢g=0.02 [ ¢ =10° |
an(x) = Bn(H(X)) € lesal | wood | ¢g=0.04 | ¢ =10" |

Numerical method preserving the power balance (discrete gradient)
o force distributed close to z =0: u=[1,...,1]"f
o listened signal: acceleration [1,...,1]y
@ n =9 modes and time step s.t. i = 220Hz to fo ~ n*f = 17820 Hz



Results: H(x) <1 — wood,

H(x) > 1 — metal

force: 5 piecewise constant pulses (0.1ms) with increasing magnitude

—Sound 6

overview

ZOOMS total (black), kinetic (red) and potential (blue)

f(in Hz)

ey

Energies

1

0

Energies

S EES

dy/dt

5
1
5
0

1246 1248 1.25 1.252 1254

oo

o

oA

t

1746 1.748 1.75 1752 1.754
t

1.246 1.248 1.25 1.252 1.254
t(ins)

4
x10

oo S

1.746 1.748 1.75 1752 1.754
t(ins)

4
x10

dy/dt

o

) LAtk

1246 1.248 1.25 1.252 1254

t(ins)

1.746 1.748 1.75 1752 1.754
t(ins)
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@ Mechanics: nonlinear damped vibrations

@ Nonlinear Berger plate [Hélie,Roze’18]



Nonlinear Berger plate [Hélie,Roze’18]
1. Dimensionless model (x,y) €,2=(0,1)2,t>0

e PDE: 8t2w+a0tw+AAw—e(/ IVw[*dS)Aw = f

Q
e Zero IC & pinned BC (w=00n9Q, 2w =0if x € {0,1}, BEw =0 if y € {0,1})
2 2 2
Energy: E:/ (Gtw) dS+/ (Aw)? ——dS+e¢ /(VW) dS
Q@ 2 Q0 2 Qo 2

2. Modal decomposition (if € = 0): ex(x,y) = 2sin(kmx)sin(lTy) (1 <k, < n)

_In Onxn

PHS: | 8:x= (J — R)VH(x) + Gu with J= {0 a J R = {8 OCJ
y= GTVH(X) G" = [0nxn, In]

— idem that the previous problem with
K = m*diag(1,...,(K* + ?)%,...,(n* + n®)?) and C = al,



Nonlinear Berger plate [Hélie,Roze'18]
1. Dimensionless model (x,y) €,2=(0,1)2,t>0

e PDE: 8t2w—|—a8tw+AAw—e(/ IVw[*dS)Aw = f

Q
e Zero IC & pinned BC (w=00n9Q, 2w =0if x € {0,1}, BEw =0 if y € {0,1})
2 \2 2 2 2
Energy: E:/MdS—i—/MdS—Fe /(VW) ds
Q@ 2 Q0 2 Qo 2

2. Modal decomposition (if € = 0): ex(x,y) = 2sin(kmx)sin(lTy) (1 <k, < n)

PHS: | dix= (J — R)VH(x) + Gu with J= {0"7" 4 J R= {O"X" O"X"J
—In Onxn 0n><n C

y= GTVH(X) G" = [0nxn, In]

— idem that the previous problem with
K = m*diag(1,...,(K* + ?)%,...,(n* + n®)?) and C = al,

Nonlinear case: € > 0
e Modal decomposition available: e(fQ \Vw|2dS)Aw colinear to Aw

e Replace quadratic H by H(q, p) = %pr + %qTKq + e(%qTKlﬁq)2
— pitch effect on sounds— video example 7 with sound and spectrum



Outline

@ Mechanics: nonlinear damped vibrations

@ Nonlinear string and Finite Element Method [Raibeau, Roze’18]



Nonlinear Kirchhoff-Carrier String and Finite Element Method  [Raibeau,Roze’18]
Nonlinear Kirchhoff-Carrier string model: PDE—FEM

1
2w + adiw — <1+5/ (f)[;W)2(1(> Zw=f
Jo

FEV MW + CW + (1 + BWTKW)KW = F with W = [wmws...wn]T.
Energy: H(Q=W,P=MW)=1PTM 1P+ (1+ 5Q"KQ) 1Q"KQ.

FEM— PHS (Finite Elements Method in the PHS formalism)

@(M_w) [ (1+$QTKQIKQ ]+Lc’),li’

u

X J R VH G

Energy-preserving simulations of a nonlinear dynamics — sounds 8

= 0.005m
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© Control applications in acoustics
@ Passive Finite-Time Control of loudspeakers [Lebrun, Wijnand et al., Nodycon'19]
@ (zoom) Robotised testbed for brass instruments [Lopes,PhD'16]
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© Control applications in acoustics
@ Passive Finite-Time Control of loudspeakers [Lebrun, Wijnand et al., Nodycon'19]



(1/11) Passive Finite-Time Control of loudspeakers — [Lebrun et al., Nodycon'19]

Motivation: sound absorption

pr(t)
{C} >
- ﬁ)

Here: {C}
(a) Finite-time control (# linear stabilization)

(b) Preserve controller passivity

Combination of (a) and (b): not straightforward.



(2/11) Passive Finite-Time Control of loudspeakers — [Lebrun et al., Nodycon'19]

Plane wave propagation in a tube

e 1D plane waves propagation

plz.t) = p'(t — z/c0) + p (t + 2/c)

Vo) = = 2/e) — (e 4 2/)
PoCo

e Boundary condition at z = 0: rigid piston

p~(0,1) = p*(0,2) — pocoé(t)

— Impedance matching condition:

ok pO.t
&(r) = POD
PoCo
pt(t — z/c0)
00 < Q)
P~ (t+2/c)
%
i
0 z

Physical models 3]



(3/11) Passive Finite-Time Control of loudspeakers — [Lebrun et al., Nodycon'19]

Current-driven loudspeaker

SaPac(t) = Mun€(t) + Rué(t) + Kmé(t) + Bl i(t)

fn(t)

i(t): current o Laplace force
e Force due to the mechanical subsystem

aclt :
ﬂ( I . Force due to the acoustic pressure

ﬂ) Power-balanced formulation

Bl i(t)  Stored energy: H(x) = Km§ + 2,’\’/,2m >0

=% 3-F el s s ][]
N e

* =—aT R>0 VH(x) u
pac(t) Vac(t)
{S} [ e } B [0 —BI ] [ K& } Port-Hamiltonian System
i(t) e(t) Vac 0 S /M [VanderShaft2014]
—— —— e —
y cT VH(x)

Physical models



(4/11) Passive Finite-Time Control of loudspeakers — [Lebrun et al., Nodycon'19]

Ingredient 1: passive control PHS approach

A passive controller ?

e {S} is a port-Hamiltonian system

(PHS):
u(t) y(t) %(t) = (J - R) VH(x) + Gu(t)
{54 B = eTvm
e Passivity:
A Y/ VAT < T

external power
stored power

) {C} e Same property imposed to {C} :

-~ Xe(t) = (J; — R.) VHc(xc) + Geu(t
ve(t) = GTVH (x.)

Passive finite-time control law 5



(5/11) Passive Finite-Time Control of loudspeakers — [Lebrun et al., Nodycon'19]

Ingredient 1: passive control

A passive controller ?
Interconnection of {S} & {C} is a PHS:

—>{S} 4 {x J-R -GGI

GCGT JC _ RC VH$+C(X7XC)

Xc

where Hqyc(x,xc) = Ho(x) + He(xc).
—1 +1
Example of control design
1. Define a total energy Hsic(x,%c) that
{C} has an equilibrium at a target x*.
) Uc(t) H5+c(Xf Xc) = (X - X*)2'
2. Deduce the energy of the controller
Hc(xc) = Herc(XvXc) - H(X) >0

Passive finite-time control law
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Ingredient 2: finite-time control

Finite-time control of a double integrator [Bernuau2015]

21222
22:V

Using the control law for 0 < aw < 1

Consider system

v=—k|z1]7* — ko| 2o ]"
with |x]® £ sign(x)|x|%, k; > 0, ky > 0, the origin is globally
finite-time stable.
o Finite-time control — nonlinear control
e Reaches target in finite-time (# asymptotic convergence)

x Controller not passive

Passive finite-time control law 9
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Passive finite-time control

Application to the loudspeaker system

e Target closed-loop energy:

a+1

Mmk 1 — [~
Hare(£,D) = Muky 222 [¢ — £7|725 4 Mmbo IP p

Rn a+1| My

— Minimum at (&, p) = (£*,9)
— Hsyc — H#positive definite

Passive finite-time control law 11
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Passive finite-time control

Application to the loudspeaker system

e Target closed-loop energy:

Mm k2 1 P - P* ot
S+C 9 Mlllk 2 “
Horel619) = Mk 252 6~ |75 + Mt 2 |P O
3 * 2
+§(f*f )"+ 2Mm(P pr)°.
— Minimum at (&,p) = (&, p%)
— B8 > K and v > R, for controller passivity
e Energy of the controller: Hsyr — Hs =He >0
2 § Mka 1 p o p* a+1
Hele) = Mok 25 % ¢ — 177 + Mol 2| "
B 2 1
EE — £ — — _— pe - >
+o(E =)+ 2Mm(p p*)’° 2M’° f >0

Passive finite-time control law

11
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Passive finite-time control

Application to the loudspeaker system

e Controller {C} :

. 00 0 0 =
% = <|:0 O:| = [0 . )V'HC(X)+ % Uc
Ye = |:l/ %} V/H(Xc)v
— B > K and v > Ry, for controller passivity
e Energy of the controller: Heio — He =He >0
2—a L2 Mpke 1 |p—pr|*T
— _ £F| 2=«
Heleop) = Mol 252l — o) 4 Ml 2P
g *\2 g *12 1 5, Knpo
Ze - — g2 m >
L vyl Gt kY v st it s S

Passive finite-time control law 11
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Numerical results

Simulation configuration

) Test cases
e Power-balanced numerical

scheme e Law 1: proposed passive finite-time

. . . (— nonlinear) control
Input: logarithmic chirp pac(t)

e Law 2: (reference) linear

Output: reflected pressure

- impedance-based control
p(t)

Time domain simulation

Input pac(t) (Pa)

10 Absorption > 75%
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
3 in any case
2 o2
= o ___\/—Wmm,hﬂ(m:
k=1 ii—— Law 1
g‘-oz Law 2
© 0.00 0.02 0.04 0.06 . 0.08 0.10 012 0.14
Time (s)

Numerical results 12
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Numerical results

Simulation configuration

) Test cases
e Power-balanced numerical

e Law 1: proposed passive finite-time
scheme
o (— nonlinear) control
e Input: logarithmic chirp pac(t)
e Law 2: (reference) linear
e Qutput: reflected pressure

- impedance-based control
p(t)

Absorption versus frequency

=1.00

E
°
°
3

=
©
-3

— Ideal

Law 1 94dB
—— Law 1 106dB
........ Law 2

Absorbed power a
° o
N 2

50 100
Frequency (Hz)

Numerical results 12
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Conclusion & perspectives

Contribution

v Construction and simulation of a passive finite-time control law

" Efficient sound absorption in the low-frequency audio range

Perspectives

o Stiff problem of finite-time control around the origin (not Lipschitz
continuous)

o Hardware implementation: passive delayed interconnection (current
work)

Conclusion & Perspectives 13
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© Control applications in acoustics

@ (zoom) Robotised testbed for brass instruments [Lopes,PhD'16]



PhD, June 2016: Nicolas Lopes

Passive modelling, simulation and experimental study

of a robotised artificial mouth playing brass instruments
1. PHS/Simu of the complete system: air jet in a channel with mobile walls, etc

Trombone

_ﬁlbouchure

Bouche arifcele ™ 5 T

Instrumented mouth, lips Robotised testbed HMI (dSpace & Python)
and mouthpiece

2. Automated exploration 3. Estimation/Observation: extended Kalman filter on PHS
- (5 estimated parameters: lip mass, stifness, etc)
Analysis of notes (N,)
ol i5o) iEEs, Normalised parameters Channel aperture
Mooeigogogogoa P
© ea i 00 O

)

PN 08 iq)ogggzg,:g; @ . ' Mgasur

*, O 0 oo < stim.

2 | 32525808 880°¢ B

=l  \o% ocooe R jor |

© S . £ ]

5eb 0 (S8885,505 85 ontey ¢ fo

2 y D S

A e S P

s ® 188 3RS Bo®o 2 8 gm0y o

P @ RIS

2 . 1¥5 058 JTe B oiE v o

2 pf & B o8 85.80058% of D de o ae

g > %0 0 0 80
oo O Temps (s) Temps (s)
85 05 16 15 30
Lips crushing (mm)
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© Voice: a minimal model to analyze self-oscillations
@ Motivation [Hélie,Silva,Wetzel, 2019]
@ A minimal PHS model for the full vocal apparatus
@ Power-balanced numerical experiments: first results



Vocal apparatus: Physiology & Physics

Air is forced out of the lungs ...

...at the top of the trachea, it goes through the glottis,

(=constriction between the vocal folds)
... before reaching the vocal tract (=pharynx, nose, mouth).

(active)

(passive)

(passive)

Source: Seikel et al
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Vocal apparatus: Physiology & Physics

Air is forced out of the lungs ...

... at the top of the trachea, it goes through the glottis,
(=constriction between the vocal folds)

... before reaching the vocal tract (=pharynx, nose, mouth).

Phonation due to a nonlinear fluid/structure interaction in the
larynx

Unstable equilibrium beyond some subglottal pressure threshold:
— Vibration of the folds
— Modulation of the glottal flow

— Coupling with acoustic waves in the vocal tract

Most of state-of-the-art physics-based voice models are
not power-balanced and violate passivity.

(active)
(passive)

(passive)

Vocal tract

Air supply




Vocal apparatus: Physiology & Physics

Air is forced out of the lungs ...

... at the top of the trachea, it goes through the glottis,
(=constriction between the vocal folds)

... before reaching the vocal tract (=pharynx, nose, mouth).

Objective

Derive a minimal model of the voice production that
@ restores a power balance
@ is structured into components
@ enables power-balanced time-domain simulations

and analyse its bifurcations and oscillation regimes

(active)

(passive)
(passive)

Vocal tract

Air supply
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© Voice: a minimal model to analyze self-oscillations

@ A minimal PHS model for the full vocal apparatus



Vocal folds model (i=1r)

Each fold is modelled as a spring-mass-damping system
to be coupled to the glottal flow through a cover spring.

e Momentum 7; and elongations &; and 7;

_ 7"/2 2 2
H= - — + k& + rinj
2 m;

e Dissipation w; = 7;/m; and zj(w;) = rjw;

e Flow-controlled at the glottis port (v;)

e Effort-controlled at the subglottal (Pp)
and supraglottal (Ps,,) ports.

3 1 , , O, H
v -1 1 -1 T sub T sup 87\';
ni -1 1 an,-
w; = 1 zi(w;)
¥ ;Ub s:_ub Paub
qup Ssup Psup
i —1 Vi

Fi Force of the vocal fold on the glottal flow

Q;up Flowrate pushed into the supraglottal cavity

.., Flowrate pulled from the subglottal cavity



Glottal flow between two parallel mobile walls

Objective: account for the transverse velocity and for power exchanged on the walls

y F
Kinematics:
(® Lo '
v S * \ o ()Y L Ve (—x
o Lt Vy (1) h(t) \Y — Ym
ti} (t) <_t°t V,(t) mean axial velocity
® S— S+ V,(t) = ym mean transverse velocity
yr
Sd Vep(t) = h transverse expansion velocity
Jzo ?6 )0 X h(t) channel height
Fr
2D field: Euler equation Reduced order dynamics
hVi(t) = Loh(Pg — P
V-v=0, V xv=0onQ(t) m()X() 0 <‘°t ‘°‘)
s m(h)V,(t) = F —F
v .
vtV (ﬁ ol > =0 me(h)Veu(t) = Loo (P P) = 57 — OnH
po 2 ;

h = dOve,H

BCs VY(yr) =y Vy()’l) =y L L
ity H(Vi, Vi, Vesp, ) = Sm(h) (VE+ V) ) + 5 me(h)V2

with h=y, —y, et ym, = 3 P



Full vocal apparatus

Air supply:
Subglottal cavity:

an ideal pressure supply Psup

uniform pressure/volume flow division

Vocal folds: as described before
Glottal flow: alternative formulation based on momentum (including scaling factor hg)
Mixing region: the jet loses its kinetic energy into heat, without pressure recovery
Dissipation wpmix & uniform pressure/volume flow division
Vocal tract: modelled as an acoustic resonator,
with a modal representation of its input impedance.
For each resonance (wy, qn, Z,), state variables X7 and Y & dissipation w;°
After elimination of linear dissipation variables:
Right [ & 1 . . Og, H
vocal T, —1-n 1 N ~sup —Saub Or, H
fold W -1 7 -1 O H
Left & 1 O¢,/H
vocal T —1-n1 7$slup 7$slub O/ H
fold il 1 ,”TO 1 Oy H
| _ “Lohs  |—Loho| Loho On, H
Glottal no |- _hy o on, H
fl M " 1 Moy H
ow - 1 1 —2|2Loty | 2Lofo |2Loko lexp
2 _OnH
Vocal | Xr¢ G S [ Lok olots | —R. -1 VxgeH
tract Ye© 1 VylacH
Mixing Wmix Lohg —2Lolo Zmix
Port |\ —Qub St St |-Loho  —2Lolo Puut
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© Voice: a minimal model to analyze self-oscillations

@ Power-balanced numerical experiments: first results



Power-balanced numerical experiments

Parameters values from literature:
Folds: m,_02g,r,_005Nsm ki = 3k;,
=1.1mm? Seps 1. 1cm?
Glottls Lo =11 mm, 2¢p = 4mm
Vocal tract: first resonance of /a/
fy = 640 Hz, go = 2.5, Zo = 1MQ
Input Pg,,: 0 7 800 Pa within 20 ms

Open glottis (hy = 1 mm)

kr = kf = 100N m—
Natural frequency of folds: 112 Hz

10

)

15

Lot F.

i —— Right F.
Glotts
05
0

Stored Energies

Elongations (mm)

3

Ac. pressure (Pa)

5 . . . .
o 005 01 015 02 025 03 035 04 045 05
tis)

No oscillation onset



Power-balanced numerical experiments

Parameters values from literature:
Folds: m,_02g,r,_005Nsm ki = 3k;,
=1.1mm? Seps 1. 1cm?
Glottls Lo =11 mm, 2¢p = 4mm
Vocal tract: first resonance of /a/
fy = 640 Hz, go = 2.5, Zo = 1MQ
Input Pg,,: 0 7 800 Pa within 20 ms

Open glottis (hy = 1 mm)

kr = kf = 100N m—
Natural frequency of folds: 112 Hz

.
515710

Lot F.

T J—
Giotis
osf
0

Elongations (mm) ~ Stored Energies

Ac. pressure (Pa)

5 . . . . . .
o 005 01 015 02 025 03 035 04 045 05
t(s)

No oscillation onset

Adduction (nearly closed, hr = 0.1 mm)

Slightly detuned vocal folds
k= 100N m~! (112 Hz)
ke = 97Nm~! (110 Hz)

5H Glottis |zl

Stored Energies ()

Elongations (mm)

Ac. pressure (Pa)

0 01 02 03 04 05 06 07 08 09 1

Periodic oscillations:
@ Oscillation stabilized after some transient

@ Synchronized folds vibrations even
without contact between folds



Power-balanced numerical experiments

Strong asymmetry Adduction (nearly closed, hr = 0.1 mm)

—il
ki =100Nm™" (112 Hz) Slightly detuned vocal folds

ke = 149N m~! (137 Hz) ki = 100N m~?! (112 Hz)

with adduction (h, =0.1 mm) k. = 97N m— ! (110 HZ)

S %108 . = ‘MO‘ . . . . . . . . .
B ! —a
I e 1 gost S i
= 10° . . . . . . . =

4 20 0‘1 02 0‘3 04 0‘5 D‘G 0‘7 D‘S 0‘9 1 :

t(s)
Quasi-periodic oscillations:
@ starting on the left (lax) vocal fold,

Periodic oscillations:

@ Oscillation stabilized after some transient
@ transferred to the right (stiffer) fold for

e Gieetly SiEe e @ Synchronized folds vibrations even

without contact between folds



Bifurcation analysis (internship L. Forma)

Coupling PyPHS with PyDSTool (continuation tool)

2.0

15 ) .
z Hopf bifurcation
£ 1.0
s Onset pressure very close to the

one obtained from time-domain
o simulation using PyPHS.
200 300 400 500 600 700 800 900
Psup (Pa)

Beyond the Hopf bifurcation: limit cycles

100
tims)

Quasi sinusoidal oscillation near threshold



Bifurcation analysis (internship L. Forma)

Coupling PyPHS with PyDSTool (continuation tool)

2.0

15 ) .
z Hopf bifurcation
£ 1.0
s Onset pressure very close to the

one obtained from time-domain
o simulation using PyPHS.
200 300 400 500 600 700 800 900
Psup (Pa)

02— peoms0re
ey

00 25 50 75 100 125 150 175
t(ms)

Force during glottal closure



Bifurcation analysis (internship L. Forma)

Coupling PyPHS with PyDSTool (continuation tool)

2.0
15
z Hopf bifurcation
£10
s Onset pressure very close to the
one obtained from time-domain
o simulation using PyPHS.
200 300 400 500 600 700 800 900
Psup (Pa)
Beyond the Hopf bifurcation: limit cycles Beyond the Neimark-Sacker bifurcation
-2 — 1000
TN AN ) -82
\: N, 4 g ~102
g Y 7 N / Sz
3 \ / . 8 14
2 N \ /7 -162
. /\///\/ ]
o ‘ =
02 — puc302r0 i -62 — Py =1200kPa
R .
E o1 212
S = W I & 1
— 1,/ ~=F- -162
01 ~ -182

Frequency

Force during glottal closure High pressure — raucous sound



Interpretation of other results on bifurcation analysis

Oscillation thresholds

% Continuation of Hopf points (ANM)

+ Estimation from time-domain simulations

*

= x ANM

a® Bifurcation delay * Simulations

Os0

S ) * x\’ A= Puy

S 40 X

I

S30 % Qui

‘; b *

'9 20 X * 1

B T i x

g

£ o LS

[ 03 04 05 06 07 08 09
Modal amplitude of the resonator (Ohm) lell

— Explicit bifurcation delay
— Related to dynamic bifurcation phenomenon?



Interpretation of other results on bifurcation analysis

Oscillation thresholds Asymmetric vocal folds (L. Forma)
% Continuation of Hopf points (ANM) Bifurcation diagrams of & and &,
o . L . ki = 150N/m k, = 100N/m
+ Estimation from time-domain simulations o
= | % ANM 2o & /,/ 30
a®° Bifurcation delay * Simulations / 20
g ; = T
S
Ew X x\’ WMWW . \\. "
£30 x Qu o T~ 10
s X * 200 400 600 800 1000 1200 200 400 600 800 1000 1200
5% * T . P P
Ew A 1 \x o sub sub
é JLL ] Second Hopf bifurcation
a 03 04 0.5 0.6 0.7 08 0.9 Ici
Modal amplitude of the resonator (Ohm) lell for a sufficient degree of o —
a00{ Psub H2 =n
— Explicit bifurcation delay D

— Related to dynamic bifurcation phenomenon?

00 e |

3004 H1

1100 1125 1150 1175 , 1200 1225 1250 1275  130.0

k,(N/m)



Interpretation of other results on bifurcation analysis

Oscillation thresholds

% Continuation of Hopf points (ANM)

+ Estimation from time-domain simulations

*

2
g

Bifurcation delay

I
g

x- ANM
* Simulations

I’y
&

P

Quup

N
S

%

5

Phonation threshold (Pa)

o

x

— Explicit bifurcation delay

04 05 06 07
Modal amplitude of the resonator (Ohm)

0.9
lell

— Related to dynamic bifurcation phenomenon?

Asymmetric vocal folds (L. Forma)
Bifurcation diagrams of & and &,
ki = 150N /m ky = 100N/m
3.0
§/ // 3.0
2.0 7
7 20
L H1 fH2 = -
/_..4;4» 10
0.0
AN 00
e T~~~ 10
W a0 o s 10 20 200 4o ebo a0 100 100
Psub Psub

Second Hopf bifurcation
for a sufficient degree of asymmetry

a00{ Psub H2

3004 H1

——

1100 1125 1150 1175 , 1200

k,(N/m)

1225 1250 1275 1300
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@ Conclusion



General conclusion and perspectives

Models and methods (in progress)

@ Nonlinear materials and damping [Matignon, Roze]
@ Various families of power-balanced numerical schemes [Muller,Roze]
© Automatic code generators for real-time applications [Falaize,Muller]
@ Passive Finite-Time Control Design [d’Andréa-Novel,Lebrun,Roze,Wijnand)]
© Digital Passive Controller for hardware applications [Lebrun]
@ Voice physical-based synthesis [Silva, Wetzel]
@ Regime analysis of self-oscillating PHS [Silva, Terrien,Wetzel]

Projects based on PHS
@ Audio/Acoustics Virtual Factory
@ Augmented/Hybrid Musical Instruments with hardware development

© Reprogrammed transducers (ideal HIFI louspeaker, acoustic absorber, etc)



General conclusion and perspectives

Models and methods (in progress)

@ Nonlinear materials and damping [Matignon, Roze]
@ Various families of power-balanced numerical schemes [Muller,Roze]
© Automatic code generators for real-time applications [Falaize,Muller]
@ Passive Finite-Time Control Design [d’Andréa-Novel,Lebrun,Roze,Wijnand)]
© Digital Passive Controller for hardware applications [Lebrun]
@ Voice physical-based synthesis [Silva, Wetzel]
@ Regime analysis of self-oscillating PHS [Silva, Terrien,Wetzel]

Projects based on PHS
@ Audio/Acoustics Virtual Factory

@ Augmented/Hybrid Musical Instruments with hardware development

© Reprogrammed transducers (ideal HIFI louspeaker, acoustic absorber, etc)

— The end —

Thank you for your attention
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